The History and Relevance of Codes


 May 2014

Codes and Standards

Think of the types of events that might have forced the creation or adoption of a national system of codes and standards. Probably the last thing that would ever come to mind is a flood of molasses cascading through the streets of Boston. But that’s exactly how engineering history was changed forever in the United States.

After several bridge and rail structural failures around the turn of the 20th Century highlighted a need for more monitored design, the molasses disaster got the engineering community on the same page.

On Jan. 15, 1919, at the Purity Distilling Co., a 50-foot container holding more than 2.5 million gallons of molasses exploded. Literally, the rivets blew out of the container, and molasses gushed through the streets of Boston at 35 mph – killing 21 people and injuring 150.

Following the tragedy, forensic experts tried to trace back through construction for a single person to target with the liability risk. There was no definitive person to take the blame. Thus, they created the first use for a professional engineer (PE). This and other building problems led to the advent of professional engineers. This created the need for engineering licensure in Massachusetts. The PE or architect of record stamps the plans, assuming all of the liability for the design of the building or device.

To prevent a massive amount of liability falling to a single person, and to create a set of good practices, codes and standards were created. The codes and standards act as the minimum acceptable design for engineering and architecture. The theory is that, if a design professional follows the codes and standards, he can have some mitigation of the risk and feel slightly protected from the close eye of an attorney following an accident.

Today, codes and standards are being re-visited, updated and changed constantly to keep the public safe. The creation of codes and standards allows designers to understand the minimum acceptable requirements for buildings. Codes help licensed and registered architects and engineers with their designs.

Different societies were formed to address different topics. The American Society of Mechanical Engineers (ASME) created the standards for pressure vessel design, which would guide modern-day designs in the United States for molasses containers. The American Society of Civil Engineers (ASCE) creates ways for Civil Engineers to predict loads on structures. The overarching building code that cities cite in their individual building codes is known as the International Building Code (IBC). This document references to other codes like the ASCE 7 code, and the American Society for Testing and Materials (ASTM), which deals with all of the building trades.

The trades then further define themselves with more specialized codes, based on their individual areas. For instance, the American Institute for Steel Construction (AISC) publishes codes for steel construction, the American Concrete Institute (ACI) writes codes for concrete and reinforced concrete. The one with which people in masonry are familiar and hold near and dear is formerly known as the Masonry Standards Joint Committee (MSJC). The MSJC was a conglomerate of the ASCE, ACI and The Masonry Society (TMS).

Starting in 2013, after years of collaboration, TMS now is the sole namesake of the masonry building codes. Cities tend to adopt codes after the codes have been published for a while. For instance, some cities may say that IBC 2006 or newer codes may be used for design. This does not mean that once the city moves on to newer codes, the outdated code can be discarded. Regarding existing structures, the building was designed with a certain code, and that is the document to reference when dealing with rehabilitation. Also note that, sometimes, cities have their own building codes that govern design.

The 2006 IBC references earlier documents of AISC, ACI and MSJC (TMS) codes. When the 2015 IBC code is released, it will reference the MSJC 2013 code that was released last year. Some people still may be using the 2008 MSJC, which is acceptable in many areas. However, many changes have occurred to the code in the cycles between 2008 and 2013. The allowable stress of masonry has been increased from 0.33f’m to 0.45f’m (2013 MSJC Section Notably, the Empirical Design of Masonry has been moved to the Appendix A, and Chapter 14 is now Masonry Partition Walls. The design of masonry walls can be governed by the Allowable Stress Design, the Strength Design, or with the prescriptive tables.

Hand calculations for masonry partition walls can get lengthy from the many scenarios of interior walls and from running through the whole design, only to find that the loading combination has failed. Masonry partition walls are strong, durable, fire resistant, energy efficient, sound absorbing and have positive attributes that have stood the test of time.

The design of interior partition walls have been cumbersome to the designer in the past, but have been made easier with the prescriptive tables. Prescriptive tables have been created for loadings of five pounds per square foot (5psf), and 10psf. In order to use these tables that give height (or length) of wall to thickness of wall, many assumptions must be met to boil down designs to a prescriptive table.

These assumptions restrict the design to risk category I, II and III structures, while neglecting category IV structures like hospitals, vital government buildings, egress stairways and meeting areas of 300 or more people.

To allow more flexibility to the design the International Masonry Institute (IMI) created an internet program available at to address more scenarios, including seismic areas and category IV buildings. The IMI Partition Wall Calculator is a fast, easy way to create plan- and specification-ready documents, allowing for more ease of design for quality masonry partition walls.

This program is intuitive and can be used by architects, engineers and contractors to design the size and reinforcement for concrete masonry block or clay brick partition walls in different support conditions.

The program produces fast results, allowing designers to save time and choose the most economical design, while contractors can use the program to change walls on the job to save money on the bid.

Joe Packhem is a staff engineer for the Masonry Advisory Council. For more information, call 847-297-6704.


Return to Table of Contents

Related Posts

  • 45
    April 2014 2013 Changes in The Masonry Code The most recent addition of the Building Code Requirements and Specifications for Masonry Structures (TMS 402-13/ACI 530-13/ASCE 5-13) has been out since the fall of 2013. Are you aware of the changes? By Paul Curtis Since the late-1980s, the Masonry Standards Joint…
    Tags: masonry, design, code
  • 42
    September 2010 By Richard E. Klingner Note: In this article, the process used to produce our masonry design code and specification in the United States is reviewed, with emphasis on how that process affects mason contractors.  Mason contractors are encouraged to participate in that process. In contrast to many other…
    Tags: code, msjc, masonry, building
  • 42
    Codes and Standards The Masonry Alliance for Code and Standards is working to develop and submit code changes that will ultimately make buildings and their residents safer. Property protection has taken a back seat in the building codes, and that needs to change. By William Hall The current cycle of…
    Tags: building, code, codes, masonry
  • 42
    January 2010 Block The Sustainability of Block The National Concrete Masonry Association reports on how making the case for the sustainability of masonry is getting a little easier. By Robert Thomas A funny thing happened on the way to a sustainable built environment. While the visionaries for a more environmentally…
    Tags: masonry, building, materials, concrete
  • 42
    June 2013 Codes Standards and Reports Building Codes, Industry Standards and Evaluation Reports By Lonnie Haughton Given the complementary roles and functions of building codes, industry standards and product evaluation reports, it is important that all construction professionals understand the appropriate applications for each. Building codes The controlling building codes…
    Tags: standards, building, code, masonry, codes


Zachary Zuldema 1st Place (2nd Year) Winner Interview at the World of Concrete

Zachary Zuldema 1st Place (2nd Year) Winner Interview at the World of Concrete

Bill Dentinger 2015 Inductee MCAA Hall of Fame

Bill Dentinger 2015 Inductee MCAA Hall of Fame

John Smith, Jr.

John Smith, Jr. receives the 2015 MCAA C. DeWitt Brown Leadman Award

2015 MCAA Fastest Trowel On The Block Winner

2015 MCAA Fastest Trowel On The Block Winner

Daniel Furr 1st Place Winner

Daniel Furr 1st Place Winner (First Year), Masonry Skills Challenge

Synpro Products

Masonry Magazine Video News Interview: Michael Goyne

Hydro Mobile Inc

Interview with Kevin O'Shea of Hydro Mobile, Inc.

Interview with Mark Kemp – Chairman, MCAA

Interview with Masonry Contractors Association of America Chairman, Mark Kemp

Mortar Net Solutions

Interview with Steve Fechino from Mortar Net Solutions

Pullman Ermator

Interview with Lyndon Kelsey of Pullman Ermator

Keene Building Products

Interview with Jim O'Neill of Keene Building Products